Part Number Hot Search : 
1045C 1045C U028006 02KX7R2 PS045 ADE04 PE2001 2SB947A
Product Description
Full Text Search
 

To Download ACPL-T350-300E Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 ACPL-T350
2.5 Amp Output Current IGBT Gate Driver Optocoupler with Low ICC
Data Sheet
Lead (Pb) Free RoHS 6 fully compliant
RoHS 6 fully compliant options available; -xxxE denotes a lead-free product
Description
The ACPL-T350 contains a GaAsP LED. The LED is optically coupled to an integrated circuit with a power output stage. These optocouplers are ideally suited for driving power IGBTs and MOSFETs used in motor control inverter applications. The high operating voltage range of the output stage provides the drive voltages required by gate controlled devices. The voltage and current supplied by these optocouplers make them ideally suited for directly driving IGBTs with ratings up to 1200 V/100 A. For IGBTs with higher ratings, the ACPL-T350 series can be used to drive a discrete power stage whichs drives the IGBT gate. The ACPL-T350 has an insulation voltage of VIORM = 630 Vpeak (Option 060).
Features
* 2.5A Absolute Maximum Peak Output Current * 15 kV/s minimum Common Mode Rejection (CMR) at VCM = 1500 V * 1.5 V maximum low level output voltage (VOL) * ICC = 4 mA maximum supply current * Under Voltage Lock-Out protection (UVLO) with hysteresis * Wide operating VCC range: 15 to 30 Volts * 500 ns maximum switching speeds * Industrial temperature range: -40C to 100C * Safety Approval - UL Recognized 3750 Vrms for 1 min. - CSA Approval - IEC/EN/DIN EN 60747-5-2 Approved VIORM = 630 Vpeak (Option 060)
Functional Diagram
ACPL-T350
N/C 1 ANODE 2 CATHODE 3 N/C 4 8 VCC 7 VO 6 VO 5 VEE
Applications
* IGBT/MOSFET gate drive * Inverter for Home Appliances * Industrial Inverters * Switching Power Supplies (SPS)
SHIELD
Note: A 0.1 F bypass capacitor must be connected between pins VCC and VEE.
UVLO Truth Table
VCC - VEE "POSITIVE GOING" (i.e., TURN-ON) 0 - 30 V 0 - 11 V 11 - 13.5 V 13.5 - 30 V VCC - VEE "NEGATIVE GOING" (i.e., TURN-OFF) 0 - 30 V 0 - 9.5 V 9.5 - 12 V 12 - 30 V
LED OFF ON ON ON
VO LOW LOW TRANSITION HIGH
CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.
Ordering Information
ACPL-T350 is UL Recognized with 3750 Vrms for 1 minute per UL1577. Option Part number ACPL-T350 RoHS Compliant -000E -300E -500E -060E -360E -560E X X X X X Package 300mil DIP-8 X X X X X X X X Surface Mount Gull Wing Tape& Reel IEC/EN/DIN EN 60747-5-2 Quantity 50 per tube 50 per tube 1000 per reel 50 per tube 50 per tube 1000 per reel
To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry. Example 1: ACPL-T350-560E to order product of 300mil DIP Gull Wing Surface Mount package in Tape and Reel packaging with IEC/EN/DIN EN 60747-5-2 Safety Approval in RoHS compliant. Example 2: ACPL-T350-000E to order product of 300mil DIP package in tube packaging and RoHS compliant. Option datasheets are available. Contact your Avago sales representative or authorized distributor for information. Remarks: The notation `#XXX' is used for existing products, while (new) products launched since 15th July 2001 and RoHS compliant option will use `-XXXE`.
Regulatory Information
The ACPL-T350 is pending approval by the following organizations: IEC/EN/DIN EN 60747-5-2 (ACPL-T350 Option 060 only) Approval under: IEC 60747-5-2 :1997 + A1:2002 EN 60747-5-2:2001 + A1:2002 DIN EN 60747-5-2 (VDE 0884 Teil 2):2003-01 UL Approval under UL 1577, component recognition program, File E55361. CSA Approval under CSA Component Acceptance Notice #5, File CA 88324.
2
Package Outline Drawings
ACPL-T350 Outline Drawing
9.65 0.25 (0.380 0.010) TYPE NUMBER 8 7 6 5 OPTION CODE* DATE CODE 7.62 0.25 (0.300 0.010) 6.35 0.25 (0.250 0.010)
A XXXXZ YYWW 1 1.19 (0.047) MAX. 2 3 4
1.78 (0.070) MAX. 5 TYP. + 0.076 0.254 - 0.051 + 0.003) (0.010 - 0.002)
3.56 0.13 (0.140 0.005)
4.70 (0.185) MAX.
0.51 (0.020) MIN. 2.92 (0.115) MIN. DIMENSIONS IN MILLIMETERS AND (INCHES). 1.080 0.320 (0.043 0.013) 0.65 (0.025) MAX. 2.54 0.25 (0.100 0.010) * MARKING CODE LETTER FOR OPTION NUMBERS. "V" = OPTION 060 OPTION NUMBERS 300 AND 500 NOT MARKED. NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.
ACPL-T350 Outline Drawing
LAND PATTERN RECOMMENDATION 9.65 0.25 (0.380 0.010)
8 7 6 5
1.016 (0.040)
6.350 0.25 (0.250 0.010)
1 2 3 4
10.9 (0.430)
1.27 (0.050) 1.780 (0.070) MAX. 9.65 0.25 (0.380 0.010) 7.62 0.25 (0.300 0.010)
2.0 (0.080)
1.19 (0.047) MAX.
3.56 0.13 (0.140 0.005)
+ 0.076 0.254 - 0.051 + 0.003) (0.010 - 0.002)
1.080 0.320 (0.043 0.013) 2.54 (0.100) BSC DIMENSIONS IN MILLIMETERS (INCHES). LEAD COPLANARITY = 0.10 mm (0.004 INCHES). NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX. 0.635 0.130 (0.025 0.005)
0.635 0.25 (0.025 0.010)
12 NOM.
3
Recommended Solder Reflow Temperature Profile
300
PREHEATING RATE 3C + 1C/- 0.5C/SEC. REFLOW HEATING RATE 2.5C 0.5C/SEC. PEAK TEMP. 245C
PEAK TEMP. 240C
TEMPERATURE (C)
200
160C 150C 140C
2.5C 0.5C/SEC. 30 SEC. 3C + 1C/- 0.5C 30 SEC.
PEAK TEMP. 230C
SOLDERING TIME 200C
100
PREHEATING TIME 150C, 90 + 30 SEC.
50 SEC. TIGHT TYPICAL LOOSE
ROOM TEMPERATURE
0
0
50
100
150
200
250
TIME (SECONDS)
Note: Non-halide flux should be used.
Recommended Pb-Free IR Profile
tp Tp 260 +0/-5 C RAMP-UP 3 C/SEC. MAX. 150 - 200 C 217 C TIME WITHIN 5 C of ACTUAL PEAK TEMPERATURE 20-40 SEC.
TEMPERATURE
TL Tsmax Tsmin
RAMP-DOWN 6 C/SEC. MAX.
ts PREHEAT 60 to 180 SEC. 25
tL
60 to 150 SEC.
t 25 C to PEAK
TIME NOTES: THE TIME FROM 25 C to PEAK TEMPERATURE = 8 MINUTES MAX. Tsmax = 200 C, Tsmin = 150 C
Note: Non-halide flux should be used.
Table 1. IEC/EN/DIN EN 60747-5-2 Insulation Characteristics* (ACPL-T350 Option 060)
Description Installation classification per DIN VDE 0110/1.89, Table 1 for rated mains voltage 150 Vrms for rated mains voltage 300 Vrms for rated mains voltage 50 Vrms Climatic Classification Pollution Degree (DIN VDE 0110/1.89) Maximum Working Insulation Voltage Input to Output Test Voltage, Method b* VIORM x 1.875=VPR, 100% Production Test with tm=1 sec, Partial discharge < 5 pC Input to Output Test Voltage, Method a* VIORM x 1.5=VPR, Type and Sample Test, tm=60 sec, Partial discharge < 5 pC Highest Allowable Overvoltage (Transient Overvoltage tini = 10 sec) Case Temperature Input Current Output Power Insulation Resistance at TS, VIO = 500 V VIORM VPR Symbol ACPL-T350 Option 060 I - IV I - IV I - III 55/100/21 2 630 1181 Vpeak Vpeak Unit
* Refer to the optocoupler section of the Isolation and Control Components Designer's Catalog, under Product Safety Regulations section, (IEC/EN/DIN EN 60747-5-2) for a detailed description of Method a and Method b partial discharge test profiles. Note: These optocouplers are suitable for "safe electrical isolation" only within the safety limit data. Maintenance of the safety data shall be ensured by means of protective circuits. Surface mount classification is Class A in accordance with CECC 00802.
1000
OUTPUT POWER - PS , INPUT CURRENT - I S
VPR
95
Vpeak
ACPL-T350 Option 060 P S (mW) I S (mA)
900 800 700 600 500 400 300 200 100 0 0 25 50
VIOTM
6000
Vpeak
Safety-limiting values - maximum values allowed in the event of a failure, also see Figure 37. TS IS, INPUT PS, OUTPUT RS 175 230 600 >109 C mA mW W
75
100
125
150
175
T S - CASE TEMPERATURE - oC
Table 2. Insulation and Safety Related Specifications
Parameter Minimum External Air Gap (Clearance) Minimum External Tracking (Creepage) Minimum Internal Plastic Gap (Internal Clearance) Tracking Resistance CTI (Comparative Tracking Index) Isolation Group Symbol L(101) L(102) ACPL-T350 Units 7.1 7. 0.08 mm mm mm Conditions Measured from input terminals to output terminals, shortest distance through air. Measured from input terminals to output terminals, shortest distance path along body. Through insulation distance conductor to conductor, usually the straight line distance thickness between the emitter and detector. DIN IEC 112/VDE 0303 Part 1 Material Group (DIN VDE 0110, 1/89, Table 1)
> 175 IIIa
V
All Avago data sheets report the creepage and clearance inherent to the optocoupler component itself. These dimensions are needed as a starting point for the equipment designer when determining the circuit insulation requirements. However, once mounted on a printed circuit board, minimum creepage and clearance requirements must be met as specified for individual equipment standards. For creepage, the shortest distance path along the surface of a printed circuit board between the solder fillets of the input and output leads must be considered. There are recommended techniques such as grooves and ribs which may be used on a printed circuit board to achieve desired creepage and clearances. Creepage and clearance distances will also change depending on factors such as pollution degree and insulation level.
5
Table 3. Absolute Maximum Ratings
Parameter Storage Temperature Operating Temperature Average Input Current Peak Transient Input Current (<1 s pulse width, 300pps) Reverse Input Voltage "High" Peak Output Current "Low" Peak Output Current Supply Voltage Input Current (Rise/Fall Time) Output Voltage Output Power Dissipation Total Power Dissipation Lead Solder Temperature Solder Reflow Temperature Profile Symbol TS TA IF(AVG) IF(TRAN) VR IOH(PEAK) IOL(PEAK) VCC - VEE tr(IN) /tf(IN) VO(PEAK) PO PT 260C for 10 sec., 1.6 mm below seating plane See Package Outline Drawings section 0 0 Min. -55 -0 Max. 125 100 25 1.0 5 2.5 2.5 35 500 VCC 250 295 Units C C mA A V A A V ns V mW mW 3 2 2 1 Note
Table 4. Recommended Operating Conditions
Parameter Power Supply Input Current (ON) Input Voltage (OFF) IOH(PEAK) / IOL (PEAK) Operating Temperature Symbol VCC - VEE IF(ON) VF(OFF) TA TA Min. 15 7 - 3.6 - 2.0 - 0 Max. 30 16 0.8 2.0 100 Units V mA V A C Note
6
Table 5. Electrical Specifications (DC)
Parameter High Level Output Current Low Level Output Current High Level Output Voltage Low Level Output Voltage High Level Supply Current Low Level Supply Current Threshold Input Current Low to High Threshold Input Voltage High to Low Input Forward Voltage
Over recommended operating conditions (TA = -0 to 100C, IF(ON) = 7 to 16 mA, VF(OFF) = -3.6 to 0.8 V, VCC = 15 to 30 V, VEE = Ground) unless otherwise specified. All typical values at TA = 25C and VCC - VEE = 30 V, unless otherwise noted. Symbol IOH IOL VOH VOL ICCH ICCL IFLH VFHL VF DVF/DTA BVR CIN VUVLO+ VUVLO- UVLO Hysteresis UVLOHYS 11.0 9.5 5 60 12.3 10.7 1.6 13.5 12.0 0.8 1.2 1.5 -2.0 1.8 Min. 0.5 2.0 0.5 2.0 VCC- VCC-3 VEE+0.5 2.0 2.0 2.0 1.5 .0 .0 5 1.6 Typ. 1.6 Max. Units A A A A V V mA mA mA V V mV/C V pF V V V Test Conditions VO = VCC - V VO = VCC - 15 V VO = VEE + 2.5 V VO = VEE + 15 V IO = -100 mA IO = 100 mA Output open, IF = 7 to 16 mA Output open, VF = -3.0 to +0.8 V IO = 0 mA, VO > 5 V IO = 0 mA, VO > 5 V IF = 10 mA IF = 10 mA IR = 10 A f = 1 MHz, VF = 0 V IF = 10 mA, VO > 5 V IF = 10 mA, VO > 5 V IF = 10 mA, VO > 5 V 1, 20 9, 19 1, 3, 17 , 6, 18 7, 8 5, 6, 16 Fig. 2, 3, 15 Note 5 2 5 2 6, 7
Temperature Coefficient of Input Forward Voltage Input Reverse Breakdown Voltage Input Capacitance UVLO Threshold
Table 6. Switching Specifications (AC)
Parameter Propagation Delay Time to High Output Level Propagation Delay Time to Low Output Level Pulse Width Distortion Propagation Delay Difference Between Any Two Parts or Channels Rise Time Fall Time Output High Level Common Mode Transient Immunity Output Low Level Common Mode Transient Immunity
Over recommended operating conditions (TA = -0 to 100C, IF(ON) = 7 to 16 mA, VF(OFF) = -3.6 to 0.8 V, VCC = 15 to 30 V, VEE = Ground) unless otherwise specified. All typical values at TA = 25C and VCC - VEE = 30 V, unless otherwise noted. Symbol tPLH tPHL PWD PDD (tPHL - tPLH) tR tF |CMH| |CML| 15 15 -0.35 Min. 0.05 0.05 Typ. 0.25 0.25 Max. 0.5 0.5 0.3 0.35 Units s s s s 9 10 Test Conditions Rg = 10 W, Cg = 10 nF, f = 10 kHz, Duty Cycle = 50% Fig. 10, 11, 12, 21 Note 8
15 20 20 20
ns ns kV/s kV/s TA = 25C, IF = 10 to 16 mA, VCM = 1500 V, VCC = 30 V TA = 25C, VF = 0 V, VCM = 1500 V , VCC = 30 V
21 22 22 11, 12 11, 13
7
Table 7. Package Characteristics
Parameter
Over recommended temperature (TA = -40 to 100C) unless otherwise specified. All typicals at TA = 25C. Symbol VISO Min. 3750 Typ. Max. Units Vrms Test Conditions RH < 50%, t = 1 min., TA = 25C VI-O = 500 V Freq=1 MHz Thermocouple located at center underside of package Fig. Note 1, 15 Input-Output Momentary Withstand Voltage**
Resistance Input-Output) Capacitance Input-Output) LED-to-Case Thermal Resistance LED-to-Detector Thermal Resistance Detector-to-Case Thermal Resistance
RI-O CI-O qLC qLD qDC
1012 0.6 67 2 126
W pF C/W C/W C/W
15
** The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. For the continuous voltage rating refers to your equipment level safety specification or Avago Application Note 1074 entitled "Optocoupler Input-Output Endurance Voltage." Notes: 1. Derate linearly above 70C free-air temperature at a rate of 0.3 mA /C. 2. Maximum pulse width = 10 s. 3. Derate linearly above 70 C free-air temperature at a rate of 4.8 mW /C. 4. Derate linearly above 70 C free-air temperature at a rate of 5.4 mW /C. The maximum LED junction temperature should not exceed 125C. 5. Maximum pulse width = 50 s 6. In this test VOH is measured with a dc load current. When driving capacitive loads VOH will approach VCC as IOH approaches zero amps. 7. Maximum pulse width = 1 ms 8. This load condition approximates the gate load of a 1200 V/100A IGBT. 9. Pulse Width Distortion (PWD) is defined as |tPHL - tPLH| for any given device. 10. The difference between tPHL and tPLH between any two ACPL-T350 parts under the same test condition. 11. Pins 1 and 4 need to be connected to LED common. 12. Common mode transient immunity in the high state is the maximum tolerable dVCM/dt of the common mode pulse, VCM, to assure that the output will remain in the high state (i.e., VO > 15.0 V). 13. Common mode transient immunity in a low state is the maximum tolerable dVCM/dt of the common mode pulse, VCM, to assure that the output will remain in a low state (i.e., VO < 2.0 V). 14. In accordance with UL1577, each optocoupler is proof tested by applying an insulation test voltage 4500 Vrms for 1 second (leakage detection current limit, II-O 5 A). 15. Device considered a two-terminal device: pins 1, 2, 3, and 4 shorted together and pins 5, 6, 7, and 8 shorted together.
8
(V OH - V CC ) - HIGH OUTPUT VOLTAGE DROP - V
(VOH - V CC ) - OUTPUT HIGH VOLTAGE DROP - V
0
IOH - OUTPUT HIGH CURRENT - A
-1
IF = 7 to 16 mA IOUT = -100 mA VCC = 15 to 30 V VEE = 0 V
2.0 1.8 1.6 1.4 1.2
IF = 7 to 16 mA VOUT = (VCC - 4 V) VCC = 15 to 30 V VEE = 0 V
-1 -2 -3 -4 -5 -6 100 C 25 C -40 C 0 0.5 1.0
IF = 7 to 16 mA VCC = 15 to 30 V VEE = 0 V
-2
-3
-4 -40 -20
0
20
40
60
80
100
1.0 -40 -20
0
20
40
60
80
100
1.5
2.0
2.5
TA - TEMPERATURE - C
TA - TEMPERATURE - C
IOH - OUTPUT HIGH CURRENT - A
Figure 1. VOH vs. temperature.
Figure 2. IOH vs. temperature.
Figure 3. VOH vs. IOH.
0.25
VOL - OUTPUT LOW VOLTAGE - V
0.20 0.15 0.10 0.05 0 -40
3
VOL - OUTPUT LOW VOLTAGE - V
IOL - OUTPUT LOW CURRENT - A
VF (OFF) = -3.0 TO 0.8 V IOUT = 100 mA VCC = 15 TO 30 V VEE = 0 V
4
VF (OFF) = -3.0 TO 0.8 V VOUT = 2.5 V VCC = 15 TO 30 V VEE = 0 V
4
3
VF(OFF) = -3.0 to 0.8 V VCC = 15 to 30 V VEE = 0 V
2
2
1
1
-20
0
20
40
60
80
100
0 -40
-20
0
20
40
60
80
100
0
100 C 25 C -40 C 0 0.5 1.0 1.5 2.0 2.5 IOL - OUTPUT LOW CURRENT - A
TA - TEMPERATURE - C
TA - TEMPERATURE - C
Figure 4. VOL vs. temperature.
Figure 5. IOL vs. temperature.
Figure 6. VOL vs. IOL.
3.00 Icc - SUPPLY CURRENT - mA Icc - SUPPLY CURRENT - mA
3.00
2.50
2.50
2.00
2.00
1.50
--------- I CcH
1.50
I CCL
--------- I CcH
I CCL 30
1.00 -40 -20 0 20 40 60 80 100 TA - TEMPERATURE - oC
1.00 15
20 25 Vcc - SUPPLY VOLTAGE - V
Figure 7. ICC vs. Temperature
Figure 8. ICC vs. VCC
9
I FLH - LOW TO HIGH CURRENT THRESHOLD - mA
5 4 3 2 1
Tp - PROPAGATION DELAY - ms
Tp - PROPAGATION DELAY - ms
VCC = 15 TO 30 V VEE = 0 V OUTPUT = OPEN
500
400
I F =7mA, TA =25 o C Rg = 10, Cg = 10nF Duty = 50% f = 10kHz
500
400
VCC =30V, VEE =0V Rg= 10, Cg = 10nF Duty = 50% f = 10kHz TA= 25 o C
300
300
200 - - - - - - TpHL TpLH 100 15 20 25 Vcc-SUPPLY VOLTAGE-V 30
200 - - - - - - TpHL TpLH 7 8 9 10 11 12 13 14 15 16
0 -40 -20
100
0
20
40
60
80
100
TA - TEMPERATURE - C
IF - FORWARD LED CURRENT - mA
Figure 9. IFLH vs. temperature.
Figure 10. Propagation delay vs. VCC.
Figure 11. Propagation delay vs. IF.
500 Tp - PROPAGATION DELAY - ms
400
Rg= 10 , Cg = 10nF Duty Cycle = 50%, f = 10kHz
VO - OUTPUT VOLTAGE - V
VCC =30V, VEE = 0V
IF - FORWARD CURRENT - mA
I F = 7mA
1000 100 10 1.0 0.1 + VF -
IF
TA = 25C
14 12 10 8 6 4 2 0 (10.7, 0.1) 0 5 10 (12.3, 0.1) 15 20 (12.3, 10.8) (10.7, 9.2)
300
200 -------- TpHL TpLH 100 -40 -20 0 20 40 60 80 TA - TEMPERATURE - oC 100
0.01 1.20 1.30 1.40 1.50 1.60
0.001 1.10
VF - FORWARD VOLTAGE - VOLTS
(VCC - VEE ) - SUPPLY VOLTAGE - V
Figure 12. Propagation delay vs. Temperature
Figure 13. Input current vs. forward voltage.
Figure 14. Under voltage lock out.
10
1
8 0.1 F + -
2 IF = 7 to 16 mA 3
7
4V + VCC = 15 to 30 V
6
IOH
4
5
Figure 15. IOH test circuit.
1
8 0.1 F IOL + VCC = 15 to 30 V 2.5 V + -
1
8 0.1 F VOH + VCC = 15 to 30 V 100 mA
2
7
2 IF = 7 to 16 mA 3
7
3
6
6
4
5
4
5
Figure 16. IOL Test circuit.
Figure 17. VOH Test circuit.
1
8 0.1 F 100 mA
1
8 0.1 F
2
7 + VCC = 15 to 30 V VOL
2 IF 3
7 VO > 5 V + VCC = 15 to 30 V
3
6
6
4
5
4
5
Figure 18. VOL Test circuit.
Figure 19. IFLH Test circuit.
11
1
8 0.1 F
2 IF = 10 mA 3
7 VO > 5 V + VCC
6
4
5
Figure 20. UVLO Test Circuit
1 IF = 7 to 16 mA + 10 KHz 500 2
8 0.1 F 7 VO VCC = 15 + to 30 V IF tr tf 90% 50% VOUT tPLH tPHL 10%
50% DUTY CYCLE
3
6
10 10 nF
4
5
Figure 21. tPLH, tPHL, tr, and tf test circuit and waveforms.
VCM IF 1 A B 2 7 VO 3 6 + VCC = 30 V 8 0.1 F 0V t VO SWITCH AT A: IF = 10 mA VO + SWITCH AT B: IF = 0 mA
-
V t
=
VCM t
5V
+ -
VOH
4
5
VOL
VCM = 1500 V
Figure 22. CMR test circuit and waveforms.
12
Typical Application Circuit
+5 V 270 2 CONTROL INPUT 74XXX OPEN COLLECTOR ACPL-T350 1 8 0.1 F 7 + VCC = 18 V Rg Q1
+ HVDC
3
6
3-PHASE AC
4
5 Q2
- HVDC
Figure 23. Recommended LED drive and application circuit.
+5 V 270
ACPL-T350 1 8 0.1 F 2 7 + VCC = 15 V Rg Q1 + 4 5 Q2 VEE = -5 V
+ HVDC
CONTROL INPUT 74XXX OPEN COLLECTOR
3
6
3-PHASE AC
- HVDC
Figure 24. Typical application circuit with negative IGBT gate drive.
For product information and a complete list of distributors, please go to our web site:
www.avagotech.com
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies, Limited in the United States and other countries. Data subject to change. Copyright (c) 2007 Avago Technologies Limited. All rights reserved. AV02-0308EN - April 26, 2007


▲Up To Search▲   

 
Price & Availability of ACPL-T350-300E

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X